ISO 9001:2015
Specific ranges & solutions
For all types of vehicles
#Top product quality
Evolving battery technology

What is a Lead–acid battery?

The lead–acid battery was invented in 1859 by French physicist Gaston Planté and is the oldest type of rechargeable battery. Despite having a very low energy-to-weight ratio and a low energy-to-volume ratio, its ability to supply high surge currents means that the cells have a relatively large power-to-weight ratio. These features, along with their low cost, makes it attractive for use in motor vehicles to provide the high current required by automobile starter motors.

As they are inexpensive compared to newer technologies, lead-acid batteries are widely used even when surge current is not important and other designs could provide higher energy densities. Large-format lead-acid designs are widely used for storage in backup power supplies in cell phone towers, high-availability settings like hospitals, and stand-alone power systems. For these roles, modified versions of the standard cell may be used to improve storage times and reduce maintenance requirements. Gel-cells and absorbed glass-mat batteries are common in these roles, collectively known as VRLA (valve-regulated lead-acid) batteries.

A lead–acid cell with two lead sulfate plates.
Fully discharged: two identical lead sulfate plates
In the discharged state both the positive and negative plates become lead(II) sulfate (PbSO4), and the electrolyte loses much of its dissolved sulfuric acid and becomes primarily water. The discharge process is driven by the conduction of electrons from the negative plate back into the cell at the positive plate in the external circuit.

Overcharging with high charging voltages generates oxygen and hydrogen gas by electrolysis of water, which is lost to the cell. Periodic maintenance of lead-acid batteries requires inspection of the electrolyte level and replacement of any water that has been lost.

Due to the freezing-point depression of the electrolyte, as the battery discharges and the concentration of sulfuric acid decreases, the electrolyte is more likely to freeze during winter weather when discharged.

Ion motion
During discharge, H+ produced at the negative plates moves into the electrolyte solution and then is consumed into the positive plates, while HSO−4 is consumed at both plates. The reverse occurs during charge. This motion can be by electrically driven proton flow or Grotthuss mechanism, or by diffusion through the medium, or by flow of a liquid electrolyte medium. Since the density is greater when the sulfuric acid concentration is higher, the liquid will tend to circulate by convection. Therefore a liquid-medium cell tends to rapidly discharge and rapidly charge more efficiently than an otherwise similar gel cell.

About the author